Abstract

Urban mapping using Landsat Thematic Mapper (TM) imagery presents numerous challenges. These include spectral mixing of diverse land cover components within pixels, spectral confusion with other land cover features such as fallow agricultural fields and the fact that urban classes of interest are of the land use and not the land cover category. A new methodology to address these issues is proposed. This approach involves, as a first step, the generation of two independent but rudimentary land cover products, one spectral-based at the pixel level and the other segment-based. These classifications are then merged through a rule-based approach to generate a final product with enhanced land use classes and accuracy. A comprehensive evaluation of derived products of Ottawa, Calgary and cities in southwestern Ontario is presented based on conventional ground reference data as well as inter-classification consistency analyses. Producer accuracies of 78% and 73% have been achieved for urban ‘residential’ and ‘commercial/industrial’ classes, respectively. The capability of Landsat TM to detect low density residential areas is assessed based on dwelling and population data derived from aerial photography and the 2001 Canadian census. For low population densities (i.e. below 3000 persons/km 2), density is observed to be monotonically related to the fraction of pixels labeled ‘residential’. At higher densities, the fraction of pixels labeled ‘residential’ remains constant due to Landsat's inability to distinguish between high-rise apartment dwellings and commercial/industrial structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call