Abstract

Information on long-term trends in total suspended solids (TSS) is critical for assessing aquatic ecosystems. However, the long-term patterns of TSS concentration (CTSS) and its latent drivers have not been well investigated. In this study, we developed and validated three semi-analysis algorithms for deriving CTSS using Landsat images. Subsequently, the long-term trends in CTSS in the Pearl River Estuary (PRE) from 1987 to 2022 and the driving factors were clarified. The developed algorithms yielded excellent performance in estimating CTSS, with mean absolute percentage errors <25% and root mean square errors of <13 mg/L. Long-term Landsat observations showed an overall decreasing trend and significant spatiotemporal dynamics of the CTSS in the PRE from 1987 to 2022. The analysis of driving factors suggested that industrial sewage, cropland, forests and grasslands, and built-up land were the four potential driving forces that explained 87.81% of the long-term variation in CTSS. This study not only provides 36-year recorded datasets of CTSS in estuary water, but also offers new insights into the complex mechanisms that regulate CTSS spatiotemporal dynamics for water resource management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call