Abstract

ABSTRACT Satellite remote sensing has been widely used to map suspended sediment concentration (SSC) in waterbodies. However, due to the complexity of sediment-water interactions, it has been difficult to derive linear and non-linear regression equations to reliably predict SSC, especially when trying to estimate depth of integrated sediment. This study uses Landsat 8 OLI (Operational Land Imager) sensor to map SSC within the Maumee River in Ohio, USA, at multiple depth intervals (15, 61, 91, and 182 cm). Simple linear least squares regression (LLSR), and three common machine learning models: random forest (RF), support vector regression (SVR), and model averaged neural network (MANN) were used to estimate SSC at the depth intervals. All machine learning models significantly outperformed LLSR while RF performed the best. In both RF and MANN, R 2 (coefficient of determination) increases with depth with a maximum R 2 of 0.89 and 0.83, respectively, at a depth of 0–182 cm. The results show that machine learning models can implement nonlinear relationships that produce better predictions than traditional linear regression methods in estimating depth integrated SSC, especially when samples are limited.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.