Abstract

We present an efficient and robust algorithm for the landmark transfer on 3D meshes that are approximately isometric. Given one or more custom landmarks placed by the user on a source mesh, our method efficiently computes corresponding landmarks on a family of target meshes. The technique is useful when a user is interested in characterization and reuse of application-specific landmarks on meshes of similar shape (for example, meshes coming from the same class of objects). Consequently, across a set of multiple meshes consistency is assured among landmarks, regardless of landmark geometric distinctiveness. The main advantage of our method over existing approaches is its low computation time. Differently from existing non-rigid registration techniques, our method detects and uses a minimum number of geometric features that are necessary to accurately locate the user-defined landmarks and avoids performing unnecessary full registration. In addition, unlike previous techniques that assume strict consistency with respect to geodesic distances, we adopt histograms of geodesic distance to define feature point coordinates, in order to handle the deviation of isometric deformation. This allows us to accurately locate the landmarks with only a small number of feature points in proximity, from which we build what we call a minimal graph. We demonstrate and evaluate the quality of transfer by our algorithm on a number of Tosca data sets.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call