Abstract

All frogs are assumed to jump in a similar manner by rapidly extending hindlimbs during the propulsive phase and rotating the limbs forward during flight in order to land forelimbs first. However, studies of jumping behavior are lacking in the most primitive living frogs of the family Leiopelmatidae. These semi-aquatic or terrestrial anurans retain a suite of plesiomorphic morphological features and are unique in using an asynchronous (trot-like) rather than synchronous "frog-kick" swimming gait of other frogs. We compared jumping behavior in leiopelmatids to more derived frogs and found that leiopelmatids maintain extended hindlimbs throughout flight and landing phases and do not land on adducted forelimbs. These "belly-flop" landings limit the ability for repeated jumps and are consistent with a riparian origin of jumping in frogs. The unique behavior of leiopelmatids shows that frogs evolved jumping before they perfected landing. Moreover, an inability to rapidly cycle the limbs may provide a functional explanation for the absence of synchronous swimming in leiopelmatids.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.