Abstract
Lambert, C, Beck, BR, and Weeks, BK. Landing impact intensities for jumping exercises from the OPTIMA-Ex trial in trained and untrained women. J Strength Cond Res 35(9): 2504-2510, 2021-High-intensity mechanical loads are required to elicit a positive adaptive bone response. Our aim was to quantify the mechanical loads of impact exercises used in each progressive stage of a bone-targeted exercise intervention (the OPTIMA-Ex trial) and to investigate differences in mechanical loads between untrained and trained subjects. A randomized repeated measures experimental design was used to quantify and compare the mechanical loads, including vertical ground reaction force (vGRF) and the rate of loading (RoL) of the landing phase, of all impact exercises applied in the OPTIMA-Ex trial and to determine the load intensity for each training stage of the impact intervention. Fifteen healthy young adult women aged 18-30 years (mean 23.1 ± 3.5 years) were recruited (5 trained and 10 untrained). Overall, vGRF was classified as high impact (>4 times body mass [BM]) for all 7 training stages (4.70 ± 1.89 to 6.79 ± 2.17 BM), whereas RoL ranged from 207.01 ± 175.09 to 371.52 ± 393.43 BM·s-1 across the stages. Furthermore, a significant time effect was observed between training stages for vGRF/BM (p = 0.001) and RoL (p < 0.001). Trained subjects exhibited greater impact loads than untrained subjects for activities at every training stage (p < 0.01). We found that impact activities at every stage of the OPTIMA-Ex trial not only met the GRF criteria for high intensity but also exhibited progressive increases in load for successive stages. Furthermore, trained subjects were capable of producing greater impact loads than untrained subjects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.