Abstract

Multibody dynamics for the flying and landing oblique impact processes of a bioinspired intermittent hopping robot is derived in this paper by using the impulse-momentum principle. The dynamics model that involves the multibody configuration, mass distribution of the robot, and friction is solved by the linear complementarity conditions in terms of different impact types. The computational and experimental data is compared. And the influence factors of landing impact are analysed as well. Based on the influence rules for landing impact, a technical design of solution is proposed for adjusting the robot’s attitude during the jumping and for absorbing the impact energy during the landing. Lessons learned from the theoretical and experimental results have general applicability to the motion prediction, performance analysis, and landing stability study for intermittent hopping robots or other legged robots.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.