Abstract

Background and aims Dryland soil organic carbon (C) pools account for a large portion of soil C globally, but their response to livestock grazing has been difficult to generalize. We hypothesized that some difficulty generalizing was due to spatial heterogeneity in dryland systems. We examined the importance of heterogeneity at vegetation and landform scales on the response of litter and soil C and nitrogen (N) to grazing. Methods Litter and soil C and N pools were quantified in different vegetation microsites (tree, shrub, open) and landform elements (dune, swale) across a grazing disturbance gradient in an eastern Australia semi-arid woodland. Results Vegetation, landform, and grazing disturbance affected litter and soil C and N pools singly and through interactions. Resource pools were distributed unevenly across vegetation and landforms, and were largest beneath trees in swales. Grazing reduced pools in vegetation-landform combinations where pools were greatest. Pool increases from high to moderate disturbance sites were minimal. Conclusions Litter and soil C and N pools are strongly affected by livestock grazing, although responses to grazing relaxation may be non-linear. Accurately predicting C and N responses to grazing in drylands will require accounting for patch differences at multiple spatial scales.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call