Abstract

Due to the environmental consequences corresponding to leachate penetration, a sequence of inexpensive conventional processes proposed leachate treatment. The main objective was maximizing the COD and heavy metal removal efficiencies while minimizing generated sludge volume and material consumption rate. Walnut-shell adsorption complements lime treatment by eliminating heavy metals and low molecular-weight organic compounds. Samples gathered from Nazlou-landfill, Urmia, Iran. The relative significance of independent variables (lime and walnut-shell dosages and pH) on the removal efficiency was investigated using response surface methodology. By estimating the gradient of relative equations of the experimental results, the ideal direction of independent variable change was found as such increasing COD removal. A new variable called OSVLDR was utilized for measuring the ratio of the observed sludge volume to used lime dosage. The proposed sequence resulted in 43.24% COD removal under optimal conditions (i.e., 6.83, and 25 g/L of lime and walnut-shell dosage and pH values of 6, and 4 for two sets). Furthermore, effective removal in heavy metal concentrations was observed, i.e., 98.17, 67.45, 91.03, and 88.02% for nickel, cadmium, zinc, and lead, respectively. The results showed that a change in variables' amount affects associated costs while making a variation at removal efficiency. Reducing the initial pH value of leachate to 3.50 might decrease the consumed raw materials and OSVLDR value, resulting in a considerable decline in material costs (by 10%). Also, the inactive walnut-shell surface with a more crushing degree was used to reduce costs in walnut-shell set experiments rather than the activated surface.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call