Abstract

A combination of the classical Fenton reaction (Fe(II)+H2O2) with UV light, the photoassisted Fenton reaction, has been investigated for the treatment of landfill leachate. The investigation has been carried out with an experimental set-up to establish the optimal treatment conditions. The degradation rate of organic pollutants is strongly promoted by the photoassisted Fenton reaction. The degradation rate depends on the amount of H2O2 and Fe(II) added, pH value, and radiation intensity. At a specific energy input of 80 kW m−3 the oxidation rate was increased to six times the rate without radiation (0 kW m−3). At the higher radiation intensity of 160 kW m−3 the degradation rate was about two times faster than at that of 80 kW m−3. Due to the regeneration of the consumed Fe(II) ions through the irradiation, the amount of ferrous salt to be added can be remarkably reduced. The optimum conditions were obtained with 1.0 x 10−3 mol 1−1 Fe(II) added, a pH value of 3, and a molar ratio of COD :H2O2=1:1. At aCOD volume loading ofless than 0.6 kg m−3 h−1, a COD degradation of more than 70% could be obtained with an energy input of 80 kW m−3.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.