Abstract

Antimony is used extensively in consumer goods, including single use plastic bottles, electronics, textiles and automobile brakes, which are disposed of in landfills at the end of their service lives. As a result, Sb is a constituent of concern in landfill emissions. Previous research has focused on leachate (liquid) and waste incineration flue gas emissions; however, Sb has the potential to volatilize through chemical and microbial processes within a landfill. In this study, iron-amended granular activated carbon was used to adsorb volatile metals directly from gas in a full-scale landfill gas collection system. Metals were quantified using acid digestion and ICP-AES analysis. Antimony concentrations far exceeded those previously reported, at up to 733 μg m−3 (mean: 254 μg m−3). In addition to Sb, As was also measured at high levels compared to previous research, as high as 740 μg m−3 (mean: 178 μg m−3). Using US EPA landfill and landfill gas databases, total Sb emissions via landfill gas are estimated to be approximately 27.3 kg day−1 in the US. Based on other estimates of national and global Sb emissions, this corresponds to approximately 4.5% of total US atmospheric emissions of Sb and 0.42% of global atmospheric emissions. Sb mass release via landfill gas is approximately 3.9 times higher than via leachate emissions. Although gas emissions are higher than expected, the vast majority (99.9%) of Sb present in landfilled MSW remains within the waste mass indefinitely. In addition to these mass release estimates, this experiment suggests that iron-amended activated carbon may offer significant metals removal from LFG, especially in the first months of new well operation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call