Abstract

In this paper, the electron effective Lande g-factor in semiconductor cylinder quantum dots is studied in the presence of the Rashba spin-orbit effect and an applied magnetic field parallel to the cylinder axis. For this goal, I have obtained an analytical solution to one-particle Schrodinger equation in the presence of both magnetic field and spin-orbit interaction (SOI). Then, using the obtained energy levels, I have study the electron effective Lande g-factor. It is found that: It is found that (i) energy levels strongly depend on the combined effects of external magnetic field and spin-orbit interaction strength. (ii) The effective Lande g-factor decreases when magnetic field increases. (iii) By increasing the cylinder radius ρ, the electron g-factor decreases. (iv) By increasing the strength of SOI, the electron g-factor increases.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call