Abstract

We consider the system of quantum differential equations for a partial flag variety and construct a basis of solutions in the form of multidimensional hypergeometric functions, that is, we construct a Landau–Ginzburg mirror for that partial flag variety. In our construction, the solutions are labeled by elements of the K-theory algebra of the partial flag variety.To establish these facts we consider the equivariant quantum differential equations for a partial flag variety and introduce a compatible system of difference equations, which we call the qKZ equations. We construct a basis of solutions of the joint system of the equivariant quantum differential equations and qKZ difference equations in the form of multidimensional hypergeometric functions. Then the facts about the non-equivariant quantum differential equations are obtained from the facts about the equivariant quantum differential equations by a suitable limit.Analyzing these constructions we obtain a formula for the fundamental Levelt solution of the quantum differential equations for a partial flag variety.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.