Abstract
According to Landauer’s principle, the energy of a particle may be used to record or erase N number of information bits within the thermal bath. The maximum number of information N recorded by the particle in the heat bath is found to be inversely proportional to its temperature T. If at least one bit of information is transferred from the particle to the medium, then the particle might exchange information with the medium. Therefore for at least one bit of information, the limiting mass that can carry or transform information assuming a temperature T= 2.73 K is equal to m = 4.718´10-40 kg which is many orders of magnitude smaller that the masse of most of today’s elementary particles. Next, using the corresponding temperature of a graviton relic and assuming at least one bit of information the corresponding graviton mass is calculated and from that, a relation for the number of information N carried by a graviton as a function of the graviton mass mgr is derived. Furthermore, the range of information number contained in a graviton is also calculated for the given range of graviton mass as given by Nieto and Goldhaber, from which we find that the range of the graviton is inversely proportional to the information number N. Finally, treating the gravitons as harmonic oscillators in an enclosure of size R we derive the range of a graviton as a function of the cosmological parameters in the present era.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.