Abstract

The symmetric Landau–Lifshitz and Weinberg energy–momentum complexes are utilized in order to determine the energy distribution in a four-dimensional, static and spherically symmetric regular Simpson–Visser space-time geometry. For different values of the metric parameter a, the static Simpson–Visser space-time geometry corresponds to the Schwarzschild black hole solution, to a regular black hole solution with a one-way spacelike throat, to a one-way wormhole solution with an extremal null throat, or to a traversable Morris–Thorne wormhole solution. Both symmetric prescriptions yield a zero momentum, while the energy distributions calculated have an expression dependent on the mass m, the radial coordinate r, and the metric parameter a. Some special limiting cases of the results derived are considered, while a possible astrophysical application to questions of gravitational lensing is indicated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.