Abstract

In this work we obtain the Landau levels and the Hall conductivity at zero temperature of a two-dimensional electron gas on a conical surface. We investigate the integer quantum Hall effect considering two different approaches. The first one is an extrinsic approach which employs an effective scalar potential that contains both the Gaussian and the mean curvature of the surface. The second one, an intrinsic approach where the Gaussian curvature is the sole term in the scalar curvature potential. From a theoretical point of view, the singular Gaussian curvature of the cone may affect the wave functions and the respective Landau levels. Since this problem requests self-adjoint extensions, we investigate how the conical tip could influence the integer quantum Hall effect, comparing with the case were the coupling between the wave functions and the conical tip is ignored. This last case corresponds to the so-called Friedrichs extension. In all cases, the Hall conductivity is enhanced by the conical geometry depending on the opening angle. There are a considerable number of theoretical papers concerned with the self-adjoint extensions on a cone and now we hope the work addressed here inspires experimental investigation on these questions about quantum dynamics on a cone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.