Abstract

We analyze the four-dimensional Hamiltonian proposed to describe the band structure of the single-Dirac-cone family of topological insulators in the presence of a uniform perpendicular magnetic field. Surface Landau level(LL) states appear, decoupled from the bulk levels and following the quantized energy dispersion of a purely two-dimensional surface Dirac Hamiltonian. A small hybridization gap splits the degeneracy of the central n=0 LL with dependence on the film thickness and the field strength that can be obtained analytically. Explicit calculation of the spin and charge densities show that surface LL states are localized within approximately one quintuple layer from the surface termination. Some new surface-bound LLs are shown to exist at a higher Landau level index.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.