Abstract

Hybrid perovskite solar cell technology has a distinct advantage over the conventional solar cell technologies due to its high predicted efficiency and low manufacturing cost. However, its commercialization is hindered by the unpredictability existing in its J-V characteristics leading to ambiguous efficiency estimation. Modeling the hysteresis in the J-V characteristics is a means of curtailing this ambiguity. It is established in literature that hysteresis models can be derived from the non-linear behavior of ferroelectric materials. Perovskite, which forms the light absorbing region of the solar cell is a ferroelectric material. In this paper, an equivalent circuit model for the hybrid perovskite solar cell is proposed in which the reasons for origin of hysteresis is characterized as varying capacitance to model hysteresis. A Landau–Khalatnikov subcircuit which portrays this variation is the principal addition to the conventional model to include hysteresis effect. The model parameters of the subcircuit are estimated from the inherent properties of perovskites. Hence, the proposed equivalent circuit model is completely physics based and it links the material property of perovskite to its equivalent circuit model parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.