Abstract

A semiclassical method is used to study Landau damping of transverse pseudo-spin waves in harmonically trapped ultracold gases in the collisionless Boltzmann limit. In this approach, the time evolution of a spin is calculated numerically as it travels in a classical orbit through a spatially dependent mean field. This method reproduces the Landau damping results for spin-waves in unbounded systems obtained with a dielectric formalism. In trapped systems, the simulations indicate that Landau damping occurs for a given spin-wave mode because of resonant phase space trajectories in which spins are "kicked out" of the mode (in spin space). A perturbative analysis of the resonant and nearly resonant trajectories gives the Landau damping rate, which is calculated for the dipole and quadrupole modes as a function of the interaction strength. The results are compared to a numerical solution of the kinetic equation by Nikuni et al.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.