Abstract

By using a mean-field approximation which describes the coupled oscillations of condensate and noncondensate atoms in the collisionless regime, Landau damping in a dilute dipolar Bose–Fermi mixture in the BEC limit where Fermi superfluid is treated as tightly bounded molecules, is investigated. In the case of a uniform quasi-two-dimensional (2D) case, the results for the Landau damping due to the Bose–Fermi interaction are obtained at low and high temperatures. It is shown that at low temperatures, the Landau damping rate is exponentially suppressed. By increasing the strength of dipolar interaction, and the energy of boson quasiparticles, Landau damping is suppressed over a broader temperature range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call