Abstract

<p>Climate change will affect terrestrial water storage (TWS) during the next decades by impacting the seasonal cycle, interannual variations, and long-term linear trends. But how exactly will the variability change in the future? Reliable projections are needed not only for sensible water management but also as input for long-term performance studies of possible Next Generation Gravity Missions (NGGMs).</p><p>In this contribution, an ensemble of climate model projections provided by the Coupled Model Intercomparison Project Phase 6 (CMIP6) covering the years 2002 – 2100 is utilized to assess possible changes in TWS variability. To demonstrate performance and identify shortcomings of the models we first compare modeled TWS to globally observed TWS from the Gravity Recovery and Climate Experiment (GRACE) and its follow-on mission (GRACE-FO) in the time span 2002 – 2020. We then analyze changes in the variability of TWS from model projections until the end of the century and the consensus on such changes within the model ensemble.</p><p>Based on these projections, we find that present-day GRACE accuracies are sufficient to detect amplitude and phase changes in the seasonal cycle in one third of the land surface after 30 years of observation, whereas a five times more accurate NGGM mission could resolve such changes almost everywhere outside the most arid landscapes of our planet. We also select one individual model experiment out of the CMIP6 ensemble that closely matches both GRACE observations and the multi-model median of all CMIP6 realizations. This model run might serve as basis for multi-decadal satellite mission performance studies to demonstrate the suitability of NGGM satellite missions to monitor long-term climate variations in the terrestrial water cycle.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.