Abstract

In the last decade, the demand for accurate land-vehicle navigation (LVN) in several applications has grown rapidly. In this context, the idea of integrating multisensor navigation systems was implemented. For LVN, the most efficient multisensor configuration is the system integrating an inertial navigation system (INS) and a global positioning system (GPS), where the GPS is used for providing position and velocity and the INS for providing orientation. The optimal estimation of the system errors is performed through a Kalman filter (KF). Unfortunately, a major problem occurs in all INS/GPS LVN applications that is caused by the frequent GPS signal blockages. In these cases, navigation is provided by the INS until satellite signals are reacquired. During such periods, navigation errors increase rapidly with time due to the time-dependent INS error behavior. For accurate positioning in these cases, some approaches, known as bridging algorithms, should be used to estimate improved navigation information. In...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call