Abstract
Accurate and detailed identification of land cover types is beneficial to the ecological environment and sustainable urban development, yet the extraction of urban land use/land cover (LULC) information with high accuracy is challenged by the high degree of landscape fragmentation. Therefore, this study is based on the Google Earth Engine (GEE) cloud platform and uses the U-Net model combined with spectral image data and SAR data to conduct a LULC classification study of highly heterogeneous urban areas in central China. The results indicated that the overall accuracy of classification result by using the U-Net model and the optimal combination of image features was 95.58%, which was 1.37%, 4.84%, and 7.85% higher than that of random forest (RF), support vector machine (SVM) and k- Nearest Neighbor (kNN), respectively. It showed that the U-Net model can effectively extract LULC information and obtain better classification results in urban areas than the machine learning algorithms. The results of this study could provide technical support to improve the accuracy of information extraction in urban areas with fragmented features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.