Abstract

Using an integrated land use and travel model system implemented for the Puget Sound region in Washington state, a Bayesian Melding technique is applied to represent variations in land use outcomes, and is propagated into travel choices across a multi-year agent-based simulation. A scenario is considered where zoned capacity is increased around light rail stations. Samples are drawn from the posterior distribution of households to generate travel model inputs. They allow for propagation of land use uncertainty into travel choices, which are themselves assessed for uncertainty by comparing against observed data. Resulting travel measures of zonal vehicle miles traveled (VMT) per capita and light rail station boardings indicate the importance of comparing distributions rather than point forecasts. Results suggest decreased VMT per capita in zones near light rail stations and increased boardings at certain stations with existing development, and less significant impacts around stations with lower initial development capacity. In many cases, individual point level comparisons of scenarios would lead to very different conclusions. Altogether, this finding adds to a line of work demonstrating the policy value of incorporating uncertainty in integrated models and provides a method for assessing these variations in a systematic way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.