Abstract

Abstract Land use change is a main driver of carbon storage in terrestrial ecosystems. Based on land use data, research results related to carbon densities in vegetation and soil as well as government policies related to development in different regions of China, this paper optimized land use structure in 2020 for different regions with the goal of increasing terrestrial ecosystem carbon storage. We defined seven types of land use: (1) cultivated land, (2) garden land, (3) woodland, (4) pasture land, (5) other agricultural land, (6) urbanized land, and (7) a mixture of other land which we call mixed land which included open water, swamps, glaciers and other land as defined below. We found: (1) For most eastern regions, woodland has the highest carbon (C) densities while C densities of pasture land and cultivated land did not differ widely. Both have C densities higher than urbanized land while urbanized land has higher carbon densities than the areas placed in the mixed land type. (2) Under an optimized land use structure projected for 2020, the area of cultivated land will decrease compared with 2005 for most regions. The areas of garden land, pasture land and other agricultural land are much smaller compared with the mixed land use type, and the changes there are not obvious and their contributions to increased carbon storage are not significant. The area of woodland will increase the most obviously and it will contribute the most to increased carbon storage. The increasing urbanization of land and the decreasing trend of other land types make it difficult to change carbon storage patterns since the Chinese economy is expanding rapidly. (3) The optimized land use structure presented here will have effects on the entire country though with regional differences. Some inland regions will always have a larger potential to increase carbon storage than other areas because the potentialities in some coastal regions are limited by social and economic development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.