Abstract
Land-use regression (LUR) has emerged as a promising technique for air pollution modeling to obtain the spatial distribution of air pollutants for epidemiological studies. LUR uses traffic, geographic, and monitoring data to develop regression models and then predict the concentration of air pollutants in the same area. To identify the spatial distribution of nitrogen dioxide (NO2), benzene, toluene, and m-p-xylene, we developed LUR models in Pohang City, one of the largest industrialized areas in Korea. Passive samplings were conducted during two 2-week integrated sampling periods in September 2010 and March 2011, at 50 sampling locations. For LUR model development, predictor variables were calculated based on land use, road lengths, point sources, satellite remote sensing, and population density. The averaged mean concentrations of NO2, benzene, toluene, and m-p-xylene were 28.4 µg/m3, 2.40 µg/m3, 15.36 µg/m3, and 0.21 µg/m3, respectively. In terms of model-based R2 values, the model for NO2 included four independent variables, showing R2 = 0.65. While the benzene and m-p-xylene models showed the same R2 values (0.43), toluene showed a lower R2 value (0.35). We estimated long-term concentrations of NO2 and VOCs at 167,057 addresses in Pohang. Our study could hold particular promise in an epidemiological setting having significant health effects associated with small area variations and encourage the extended study using LUR modeling in Asia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.