Abstract

A pressing challenge to global sustainability is meeting the escalating needs of a growing population while safeguarding land resources from degradation. In recent decades, China's rapid growth, expanding population, urban sprawl, and diminishing high-quality farmland have presented a compelling case suitable for exploring solutions and challenges related to this critical issue. Therefore, there is an urgent need for comprehensive and detailed information regarding land systems. Here, we developed the first fine-scale dataset of the China Land System at a spatial resolution of 1 km, covering the period from 2000 to 2015. By leveraging this comprehensive land information, we identified five primary types of land systems and their respective subsystems, thereby delineating distinct patterns of human–environmental interaction. Land system dynamics followed diverse developmental trajectories characterized by incremental shifts toward more functionally centralized systems. Land use intensification played a significant role in increasing the population capacity and food production in China, contributing nearly 93.94% and 84.99%, respectively. In contrast, land cover changes accounted for only 4.69% and 11.43%, respectively. These findings underscore the tendency of previous studies to overestimate the impact of land cover change and underestimate the influence of land use intensification in meeting the growing demands of land-based production. This study emphasizes the importance of transcending traditional land cover-based approaches and integrating land systems into land representation and global land change scenario simulations to promote sustainability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call