Abstract

BackgroundLand use/cover (LULC) change is a dynamic and complex process that can be caused by many interacting processes ranging from various natural factors to socioeconomic dynamics . It exerts a strong influence on the structure, functions and dynamics of most landscapes. Monitoring and mapping of LULC dynamics are crucial as changes observed reflect the status of the environment and provide input parameters for optimum natural resources management and utilization. The objective of this study was to quantify the spatio-temporal LULC dynamics using satellite image coupled with local perceptions in the Gedalas watershed of the Blue Nile Basin, North Eastern Ethiopia. Maximum likelihood supervised image classification technique were employed to classify LULC categories. After ensuring acceptable accuracy value for each classified image, image differencing approach was used to detect and quantify LULC transitions of the area. Classification results were validated with the aid of field work, topographic maps, and high resolution Google earth images supplemented with other available thematic data sets.The resultsThe result demonstrated seven major LULC classes and the overall scenario presented by the study reveals that the watershed has experienced quite visible LULC transitions that seem to be continued in the future due to eternal anthropogenic activities and natural factors. The study ascertain that though there was change in all land use types, the major change detected was a consistent expansion of farmland/settlements area mainly at the expense of Afro/sub Afro alpine vegetation areas. On the contrary, Afro/sub Afro alpine vegetation showed a consistent net loss of over the study of periods. The findings also highlighted that transitions were ultimately driven by the interplay of biophysical, socioeconomic and institutional factors. Perceptions of the local communities on the LULC change substantially agree with data from satellite images. This implies that the ongoing rural land administration and natural resource conservation and management strategies could not effectively address the expansion of agricultural land towards fragile and marginal lands in the study area.ConclusionThe study concludes that if these trends of crop lands expansion allowed continuing, sooner or later there will be no Afro/sub Afro alpine vegetation will remain. Therefore, local governments should strive to expand SLM activities on such mountain ecosystems and other marginal lands focusing on community livelihood diversification and sustainable intensification strategies.

Highlights

  • Land use/cover (LULC) change is a dynamic and complex process that can be caused by many interacting processes ranging from various natural factors to socioeconomic dynamics

  • Land use and land cover patterns change in keeping with demands for natural resources (Anderson 1976)

  • Spatiotemporal distributions of land use and land cover (LULC) types in Gedalas watershed (1973–2017) The spatio-temporal quantity of LULC types of each category was analyzed in terms of total area and percentage for each study periods (Table 4, Fig. 7)

Read more

Summary

Introduction

Land use/cover (LULC) change is a dynamic and complex process that can be caused by many interacting processes ranging from various natural factors to socioeconomic dynamics. Studies have shown that the evidences of land use/cover changes dates back many 1000 years, the recent rates, extents and intensities of human pressure on land and its scarce resources is more rapid and extensive than in any comparable period of time (Petit and Lambin 2002; MEA 2005; Ellis and Pontius 2006). This unprecedented human and environment interactions have been verified by LULC changes

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call