Abstract
This study uses remote sensing and GIS techniques to examine the intensity and dynamics of land use/cover change and environmental indices across a four-decade period in the Chingola district of Zambia, from 1972 to 2020 using five classification stages (1972, 1992, 2001, 2013, and 2020). A total of 10 key climate change detection monitoring indices were generated using RClimDex to examine the implications of land degradation on the bioclimatic factors from 1983 to 2020. The findings revealed a significant expansion in Built-ups (7.3%/year), farmlands (3.18%/year), and mining areas (0.82%/year) at the expense of natural resources. The highest human pressure was exerted on Savannah woodlands (−0.78), through agriculture (0.76) and infrastructure development (0.44) between 1992 and 2001.The analysis of the bioclimatic indices revealed a significant decline in rainfall quantity and intensity, and a rising in temperature (warmer days and nights). The Annual rainfall has decreased by −3.25%, while the potential evapotranspiration has increased by 0.04% from 1983 to 2020, resulting in an Aridity Index of 0.60 and a moisture deficit index of −0.42. To offset agriculture’s propensity to spatially expand and further encroach into savannah woodlands and forests, urban containment policies and programs that stimulate agricultural intensification are needed to reduce urban sprawl and protect the city’s remaining forestlands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.