Abstract

Tropical peatlands are one of the largest reservoirs of terrestrial organic carbon. However, present-day tropical peat swamp forests are under threat by anthropogenic disturbances and have already been widely degraded. Anthropogenic pressures on peatland ecosystems have resulted in ecological and biogeochemical changes and the release of carbon to the atmosphere. In Southeast Asia, the conversion of peatlands to oil palm plantations has accelerated significantly during the last 2 decades. This research analyzed direct and indirect land-use changes (DLUC and ILUC) that have been associated with oil palm expansion and anthropogenic impacts in the Princess Sirindhorn Wildlife Sanctuary (PSWS), Narathiwat, southern Thailand. Our analysis is based on land-use and land-cover data of the Land Development of Thailand from two different periods: 2000–2009 and 2009–2016. For the purpose of comparison, the data were reclassified into 12 types of land use: oil palm, para rubber, paddy field, abandoned paddy field, orchard, other agriculture lands, wetlands and peatlands, mangrove, evergreen forest, water area, build-up area, and unused area. In addition, the area of net change due to DLUC and ILUC was calculated, and carbon stock changes were estimated from above- and below-ground biomass and soil organic carbon. The results show that the total oil palm plantation area has increased from 0.04% in 2000 to 6.84% in 2016, because of a Thai government policy promoting the use of biodiesel and increasing capacity of palm oil production in 2005. Paddy field, evergreen forest, wetlands, and peatlands were the main areas being replaced. The clearance of natural forest greatly increased in the period of 2000–2009. The ILUC indicates that the expansion of oil palm plantations invades other croplands (paddy field, para rubber, and orchard). The results demonstrate that the conversion of natural landscapes (evergreen forest, mangrove, wetlands, and peatlands) to oil palm plantations at Princess Sirindhorn Wildlife Sanctuary area had a negative effect, with carbon stock changes of 4 million Mg C during 2000–2016 (0.25 million Mg C/year). Given the significance of carbon stock changes arising from land-use changes, this research highlights the need for sustainable land-use management and long-term monitoring.

Highlights

  • Since the 14th century, when palm oil was introduced in Southeast Asia, it became a crucial feedstock in the region, because the production cost is lower than that of other oil crops (Mukherjee and Sovacool, 2014)

  • The total area occupied by orchard and para rubber fluctuated, orchard increased by 2.49%, and para rubber decreased by 1.67% when comparing the year 2000–2016

  • Based on the data from agricultural exports of Thailand, we investigated the area of paddy field, orchard, and para rubber to find the impact of indirect land-use change (ILUC) after the oil palm cultivation area expanded

Read more

Summary

Introduction

Since the 14th century, when palm oil was introduced in Southeast Asia, it became a crucial feedstock in the region, because the production cost is lower than that of other oil crops (Mukherjee and Sovacool, 2014). Numerous works on land-use and cover change (LUCC) in Southeast Asia have shown that the expansion of oil palm plantations has been threatening peatland areas, causing deforestation, especially in Malaysia, Indonesia, and Thailand (Page et al, 2006; Murdiyarso et al, 2010; Fuller et al, 2011; Medrilzam et al, 2014; Prabowo et al, 2017; Dib et al, 2018; Othman et al, 2018; Tarigan, 2018). Several studies indicated that the greenhouse gas (GHG) emission rate increased when forests and peatlands were replaced by oil palm plantations (Germer and Sauerborn, 2007; Fargione et al, 2008; Dewi et al, 2009; Croezen et al, 2010; de Souza et al, 2010; Carlson et al, 2012)

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call