Abstract

SummaryLand use caused by human socioeconomic activities is a driver of change in the global environment. To understand and quantify land‐use change on Earth's natural systems, interdisciplinary approaches linking biophysical and socioeconomic parameters are required. One approach to understand the degree of terrestrial colonization of the biosphere is using the human appropriation of net primary productivity (HANPP). HANPP is defined as the difference between the net primary productivity (NPP) of potential vegetation and the actual NPP for a given area of land. Here, we use HANPP as a lens to examine land‐use change in India from 1700 to 2007 using a spatially explicit data set that extends over this period. We also used the nongridded, Food and Agriculture Organization (FAO) data set to calculate HANPP for India from 1961 to 2012 and compared our results. The average potential NPP for India was estimated to be 664 grams of carbon per square meter per year (g C/m2/year). Between 1700 and 2012, the fraction of pastureland and cropland increased from 20% to almost 60%. HANPP as a fraction of the potential NPP increased from 29% to 73% over this period. Calculations of HANPP using the FAO data set yielded an increase from 600 g C/m2 to just over 700 g C/m2 between 1961 and 2012. We also calculated the embodied HANPP of India by considering imports and exports, but the difference between the two is negligible in comparison to the HANPP of India. We further examined the variation of HANPP with socioeconomic parameters such as the Human Development Index (HDI) and population density. There was a roughly negative trend of HANPP with HDI. HANPP roughly increases with population density and then plateaus above a population density of roughly 200 persons per square kilometer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call