Abstract

Understanding the underlying mechanisms of soil microbial nitrogen (N) utilization under land use change is critical to evaluating soil N availability or limitation and its environmental consequences. A combination of soil gross N production and ecoenzymatic stoichiometry provides a promising avenue for nutrient limitation assessment in soil microbial metabolism. Gross N production via 15N tracing and ecoenzymatic stoichiometry through the vector and threshold element ratio (Vector-TER) model were quantified to evaluate the soil microbial N limitation in response to land use changes. We used tropical soil samples from a natural forest ecosystem and three managed ecosystems (paddy, rubber, and eucalyptus sites). Soil extracellular enzyme activities were significantly lower in managed ecosystems than in a natural forest. The Vector-TER model results indicated microbial carbon (C) and N limitations in the natural forest soil, and land use change from the natural forest to managed ecosystems increased the soil microbial N limitation. The soil microbial N limitation was positively related to gross N mineralization (GNM) and nitrification (GN) rates. The decrease in microbial biomass C and N as well as hydrolyzable ammonium N in managed ecosystems led to the decrease in N-acquiring enzymes, inhibiting GNM and GN rates and ultimately increasing the microbial N limitation. Soil GNM was also positively correlated with leucine aminopeptidase and β-N-acetylglucosaminidase. The results highlight that converting tropical natural forests to managed ecosystems can increase the soil microbial N limitation through reducing the soil microbial biomass and gross N production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call