Abstract

Summary1. In sub‐Saharan Africa, tropical forests are increasingly threatened by accelerating rates of forest conversion and degradation. In East Africa, the larger tracts of intact rainforest lie largely in protected areas surrounded by converted landscape. Thus, there is critical need to understand the functional links between large‐scale land use and changes in river conditions, and the implications of park boundaries on catchment integrity.2. The objective of this study was to use the mosaic of heavily converted land and pristine forest created by the protection of the high‐altitude rainforest in Bwindi Impenetrable National Park, Uganda to explore effects of deforestation on aquatic systems and the value of forest in buffering effects of adjacent land conversion. A set of 16 sites was selected over four drainages to include four categories of deforestation: agricultural land, deforested upstream (of the park boundary), forest edge (park boundary) and forest. We predicted that forest buffer (downstream or on the edge) would moderate effects of deforestation. To address this prediction, we quantified relationships between disturbance level and both physicochemical characters and traits of the macroinvertebrate assemblages during six sampling periods (February 2003 and June 2004).3. Results of both principal components analysis and cluster analyses indicated differences in limnological variables among deforestation categories. PC1 described a gradient from deforested sites with poor water quality to pristine forested sites with relatively good water quality. Agricultural sites and deforested upstream sites generally had the highest turbidity, total dissolved solids (TDS), and conductivity values and low transparency values. Forest sites and boundary site groups generally exhibited low turbidity, TDS, and conductivity values and high water transparency values. Sites also clustered according to deforestation categories; forest and forested edge sites formed a cluster independent of both agricultural land and deforested‐upstream.4. Water transparency, water temperature, and pH were the most important factors predicting benthic macroinvertebrate assemblages. Sensitive invertebrate families of Trichoptera, Ephemeroptera, Plecoptera, and Odonata dominated forested sites with high water transparency, low water temperature, and low pH while the tolerant families of Ephemeroptera, Diptera, Hemiptera, and Coleoptera were abundant in agriculturally impacted sites with low water transparency, high water temperature, and high pH.5. This study provides support for the importance of riparian buffers in moderating effects of deforestation. Forest and forested edge sites were more similar in both limnological and macroinvertebrate assemblage structure than sites within or downstream from agricultural lands. If the protected area cannot encompass the catchment, the use of rivers as park boundaries may help to maintain the biological integrity of the rivers by buffering one side of the watercourse.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.