Abstract

The Gaofen-5 (GF-5) satellite, the only satellite that provides the thermal infrared (TIR) sensor in the national high-resolution earth observation project of China, will observe earth surface at a spatial resolution of 40 m in four TIR channels. This paper aims at developing a new nonlinear, four-channel split-window (SW) algorithm to retrieve land surface temperature (LST) from GF-5 image. In the SW algorithm, its coefficients were obtained based on several subranges of atmospheric column water vapors (CWV) under various land surface conditions, in order to remove the atmospheric effect and improve the retrieval accuracy. Results showed that the new algorithm can obtain LST with root-mean-square errors of less than 1 K. Compared with previous two- and three-channel SW algorithms, the four-channel SW algorithm obtained better results in estimating LST, especially under moist atmospheres. Methods of estimating CWV and pixel emissivity were also conducted. The sensitive analysis of LST retrieval to instrument noise and uncertainty of pixel emissivity and water vapor demonstrated the good performance of the proposed algorithm. At last, the new SW algorithm was validated using ground-measured data at six sites, and some simulated images from airborne hyperspectral TIR data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call