Abstract

In the rapidly urbanizing world, as one of the distinct anthropogenic alterations of global climate change, global warming has attracted rising concerns due to its negative effects on human well-being and biodiversity. However, existing studies mostly focused on the difference in temperature elevation among urbanized areas and non-urbanized areas, i.e., rural or suburban areas. The allometric urban warming at intra-urban scales was overlooked. This research aimed to expand our understanding of urbanization–temperature relationships by applying a concept of a “previous-new” dichotomy of urbanized areas. To quantify the land surface temperature (LST) dynamics of 340 cities in China, we analyzed the LST of different land use types through trend analysis and absolute change calculation models. The urban heat island (UHI) effect of two spatial units, i.e., newly expanded urbanized area (“new UA” hereinafter) during 2000–2015 and previously existing urbanized area (“previous UA” hereinafter) in 2000, were compared and discussed. Our findings reveal that urban growth in China coincided with an LST increase of approximately 0.68 °C across the entire administrative boundary, with higher increases observed in regions between the Yellow River and Yangtze River and lower increases in other areas. Moreover, the new UA exhibited significantly greater LST increases and urban heat island intensity (HUII) compared to the previous UA. The dynamics of LST corresponded to the speed and scale of urban growth, with cities experiencing higher growth rates and percentages exhibiting more pronounced LST increases. This study reveals the impact of the underlying surface on human settlements on a large scale.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call