Abstract

Aeolian sandy lands are widespread and desertification is recognized as one of the main environmental issues in the Yarlung Zangbo River valley, southern Tibetan plateau. The surface microtopographic variations induced by the near soil surface characteristics of plant communities are important compositions of land surface roughness, which likely influence wind erosion. This study was conducted to quantify the effects of typical vegetation restoration on land surface roughness on the aeolian sandy lands, and to identify the main influencing factors of land surface roughness in the Yarlung Zangbo River valley. Two bare sandy lands (as controls) and eight vegetated sandy lands with different restoration communities and ages were selected, and land surface roughness (LSR), as represented by surface microtopographic variations in this study, was measured by photogrammetric surveys. The results showed that LSR significantly increased by 7.9–16.8 times after vegetation restoration on the aeolian sandy lands, and varied among different restoration communities and ages. The mostly restored communities of Sophora moorcroftiana and Populus L. had greater LSR as compared to Artemisia wellbyi and Hedysarum scoparium. With succession from 6 to over 30 years, LSR gradually increased in the Sophora moorcroftiana restored sandy lands, but decreased in the Populus L. restored sandy lands. The variations of LSR were mainly attributed to the differences in near soil surface characteristics of vegetation (plant stem diameter and coverage, and plant residue density) and biological soil crusts (coverage and thickness). Mixed plantation of Populus L. and Sophora moorcroftiana was considered as the best restoration communities because of their effectiveness in increasing land surface roughness on the aeolian sandy lands in the Yarlung Zangbo River valley. The results would facilitate the understanding of the benefits of vegetation restoration in controlling wind erosion on the aeolian sandy lands.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call