Abstract

Land surface phenology (LSP) is a key indicator of ecosystem dynamics under a changing environment. Over the last few decades, numerous studies have used the time series data of vegetation indices derived from land surface reflectance acquired by satellite-based optical sensors to delineate land surface phenology. Recent progress and data accumulation from CO2 eddy flux towers offers a new perspective for delineating land surface phenology through either net ecosystem exchange of CO2 (NEE) or gross primary production (GPP). In this chapter, we discussed the potential convergence of satellite observation approach and CO2 eddy flux observation approach. We evaluated three vegetation indices (Normalized Difference Vegetation Index, Enhanced Vegetation Index, and Land Surface Water Index) in relation to NEE and GPP data from five CO2 eddy flux tower sites, representing five vegetation types (deciduous broadleaf forests, evergreen needleleaf forest, temperate grassland, cropland, and tropical moist evergreen broadleaf forest). This chapter highlights the need for the community to combine satellite observation approach and CO2 eddy flux observation approach, in order to develop better understanding of land surface phenology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.