Abstract
The spatial extent and duration of soil freeze/thaw (F/T) control water and heat exchange, the energy cycle, and climate change. Global warming causes permafrost thawing, which increases carbon emissions and in turn exacerbates climate change. Passive microwave remote sensing has been proven to be effective in monitoring land surface F/T. However, it was found that the applicability of existing passive microwave remote sensing-retrieved F/T products in large-scale areas (such as the Qinghai-Tibetan Plateau (QTP)) was influenced by some landscape factors, such as the arid climate type and terrain elevation gradient. FY-3 series satellites have accumulated nearly 10 years of passive microwave data, but there is little work based on FY-3 passive microwave data to see its potential in land surface F/T status monitoring. In this work, we proposed a dynamic method to determine the surface F/T status by combining the edge detection method and discriminant function algorithm from FY-3B X-and Ka-band microwave radiation imager (MWRI) data. Comparing the results against three F/T products based on in situ 5 cm soil temperature, we demonstrate that this algorithm performs best over different validation areas with an overall accuracy of 86.5%. More specifically, the new algorithm improved the accuracy of current F/T products in arid and semiarid regions from 73% to 90%. Additionally, the spatial distribution of frozen days over the QTP of 2018 based on the new algorithm has good consistency with the permafrost map. However, the accuracy is influenced by snowmelt and appears to be overestimated for thaw soil during the day. This algorithm performs well in QTP areas with complex topography and climate types and holds the promise of providing users with highly accurate F/T products on larger and even global scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.