Abstract
The land surface albedo (LSA) represents the ability of the land surface to reflect solar radiation. It is one of the driving factors in the energy balance of land surface radiation and in land–air interactions. In this paper, we estimated the land surface albedo based on GF-1 WFV satellite data that have a high spatial and temporal resolution and cross-validated the albedo estimation results. The albedo estimations and validations were performed in the Ganzhou District, Zhangye City, China, and the Sindh Province, Pakistan. We used the direct estimation method which used a radiative transfer simulation to establish the relationship between the narrow band top of the atmosphere bidirectional reflectance and the land broadband albedo to estimate the albedo data. The results were validated with ground data, Landsat data, MODIS products, and GLASS products. The results show that the method can produce highly accurate albedo estimation results on different land cover types (RMSE: 0.026, R2: 0.835) and has a good consistency with the existing albedo products. This study makes a significant contribution to improving the utilization of GF data and contributes to the understanding of land–air interactions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.