Abstract
Land subsidence is rapidly developing across the Beijing Plain, China. Long-term intense overexploitation of groundwater is the main reason for land subsidence in Beijing. In this study, an optimized Small Baseline Subset (SBAS) interferometry method was developed to process 46 RADATSAT-2 images from 2011 to 2015 to investigate the spatial and temporal dynamics of land subsidence in the Beijing Plain. The lag time between land subsidence and groundwater exploitation was first analyzed by the Continuous Wavelet Transform (CWT) and Cross Wavelet Transform (XWT) methods Our study found that the maximum subsidence rate reached 141 mm per year. The analysis of the areas and volumes of the annual subsidence rates indicated that the overall deformation trend slowed down from 2011 to 2015. Our results indicate that the subsidence center is always located in the southeast of Chaoyang District from 2011 to 2015. The lag time between the observed subsidence and the groundwater level drops in the main exploration aquifer layers was 0.57–1.76 months. This information is helpful to reveal the mechanism of land subsidence and build hydrogeological model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Applied Earth Observation and Geoinformation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.