Abstract

ABSTRACT The compaction measurements of Quaternary and Tertiary Gulf Coast aquifer system sediments in the Houston-Galveston region (TX) show spatially variable compression of 0.08 to 8.49 mm/yr because of geohistorical overburden pressure when groundwater levels in the aquifer system were stable after about the year 2000. An aquifer-system creep equation is developed for evaluating this variable compression, with a thickness-weighted average creep coefficient based on Taylor's (1942) secondary consolidation theory. The temporal variation of aquifer system creep can be neglected in a short-term observation period (such as a decade) after a long-term creep period (such as over 1,000 years) in geohistory. The creep coefficient of the Gulf Coast aquifer system is found to be in a range of 8.74 × 10−5 to 3.94 × 10−3 (dimensionless), with an average of 1.38 × 10−3. Moreover, for silty clay or clay-dominant aquitards in the Gulf Coast aquifer system the creep coefficient value varies in the range of 2.21 × 10−4 to 3.94 × 10−3, which is consistent with values found by Mesri (1973) for most soils, which vary in the range of creep coefficient, 1 × 10−4 to 5 × 10−3. Land subsidence due to secondary consolidation of the Gulf Coast aquifer system is estimated to be 0.04 to 4.33 m in the 20th century and is projected to be 0.01 to 0.64 m in the 21st century at the 13 borehole extensometer locations in the Houston-Galveston region. The significant creep should be considered in the relative sea level rise, in addition to tectonic subsidence and primary consolidation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call