Abstract

A worldwide modeling effort has been proposed by the LOICZ (Land-Ocean Interactions in the Coastal Zone) Program to foster the acquisition of intercomparable data on land-ocean fluxes in estuaries and continental shelf ecosystems from all continental margins. As part of the South American component of this initiative, we present flux estimates of water, salt, dissolved inorganic phosphorus (DIP), dissolved inorganic nitrogen (DIN) and plankton for the estuarine system of Paranaguá Bay, southern Brazil, based on the LOICZ modeling approach and local data obtained during the 1990's. This system is strongly influenced by a seasonal meteorological cycle, represented by the rainy/summer and dry/winter periods. Semi-diurnal tides of up to the 2.7-m range are responsible for the short time-scale dynamics. The model indicated a potential water export to the adjacent coast of up to 7 x 10(6) m³ d-1 in the dry season, and 28 x 10(6) m³ d-1 during the rainy season. The system exhibits seasonal and spatial variations in DIP and DIN fluxes. "DIP amounted to +2.3 x 10(6) mol P yr-1 and "DIN to -2.7 x 10(6) mol N yr-1, suggesting that net production of phosphate and consumption of inorganic nitrogen predominate throughout in the system. Fluxes and therefore export of DIN and eespecially of DIP are higher in the rainy season. Stoichiometric estimates based on the C:N:P ratios of the reacting particulate organic matter (mangrove and plankton detritus) suggest that net denitrification predominates all over the bay, with values between -24.3 and -10.6 x 10(6) mol N year-1. Estimated seaward outflows had little effect upon the fate of the phyto- and zooplankton biomass in different sectors of the bay. This is exemplified by the low net export of algal production from the upper to the middle sectors of the estuary.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.