Abstract

Land is the uppermost territorial unit of the earth’s surface that is quasi-homogeneous in its physical, natural, and also anthropogenic properties. The fundamental component of land is lithosphere. The focus of this work is on a carbonatic geo-environment that is dominantly characterized by Mesozoic rock complexes, significant chemical weathering, and a set of landforms that are unique to this type of a geological structures. In general, optimal land management is a composite of land sharing and land sparing practices; however, in order to answer the question: ‘What is a parcel of land best suited for?’ often requires well-organized spatial data. In this work, we have focused on developing a model that would evaluate the suitability of a carbonatic geo-environment for land management practices. Due to the potential hazards of some sinkhole infested areas, the risk of natural hazards must be first evaluated. In addition, the level of hazards depends on population pressure and the intensity of human impact on this particular environment. In this research, we have applied the principles of geostatistics to evaluate the probabilities for sinkhole hazards as well as fuzzy logic to evaluate the suitability of land sharing and land sparing management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call