Abstract

The ecosystems in China's arid and semiarid regions are notably fragile and experiencing dramatic land degradation. At the 12th Conference of the Parties (COP12) to the United Nations Convention to Combat Desertification (UNCCD) in October 2015, a definition for land degradation neutrality (LDN) was proposed and subsequently integrated into the Sustainable Development Goals (SDGs). Research on LDN has developed in terms of conceptual framework constructions, quantitative assessments, and empirical studies. However, LDN and its drivers must be clarified in China's arid and semiarid regions since some representative processes have yet to be fully considered in the assessment. Here, we develop an LDN indicator system specialised for the area, assess their LDN status, and determine the impacts of human activities and climate change on LDN. Our research aims to refine the LDN indicator system tailored for China's arid and semiarid regions by incorporating the trends of wind and water erosion. We also identify the influence of human activity and climate change on LDN, which provides insightful strategies for ecological restoration and sustainable development in drylands with climate-sensitive ecosystems. The results show that: (1) In 2020, more than half of areas of China's arid and semiarid regions achieved LDN, with more pronounced success in the southeastern areas compared to the central regions. (2) For LDN drivers, elevation shows negligible influence on LDN, whereas increased temperature promotes LDN achievement. Conversely, factors like vapour pressure deficit and v-direction wind speed hinder it. In conclusion, China's arid and semiarid regions achieved LDN, and the dominant factor that substantially influences LDN varies across geographical zones, with higher wind speeds and elevated GDP levels generally obstructing LDN in most areas.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.