Abstract

AbstractLand conversion in sub‐Saharan Africa has profound biophysical, ecological, political and social consequences for human well‐being and ecosystem services. Understanding the process of land cover changes and transitions is essential for good ecosystem management policy that would lead to improved agricultural production, human well‐being and ecosystems health. This study aimed to assess land cover transitions in a typical semi‐arid degraded agro‐ecosystems environment within the Pangani river basin in northern Tanzania. Three Landsat images spanning over 30 years were used to detect random and systematic patterns of land cover transition in a landscape dominated by crop and livestock farming. Results revealed that current land cover transition is driven by a systematic process of change dominated by the following: (i) transition from degraded land to sparse bushland (10·8%); (ii) conversion from sparse bushland to dense bushland in lowland areas (6·0%); (iii) conversion from bushland to forest (4·8%); and (iv) conversion from dense bushland to cropland in the highlands (4·5%). Agricultural lands under water harvesting technology adoption show a high degree of persistence (60–80%) between time slices. This suggests that there is a trend in land‐use change towards vegetation improvement in the catchment with a continuous increase in the adoption of water harvesting technologies for crop and livestock farming. This can be interpreted as a sign of agricultural intensification and vegetation regrowth in the catchment. Copyright © 2015 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call