Abstract
Using soft classification, it is possible to obtain the land cover proportions from the remotely sensed image. These land cover proportions are then used as input data for a procedure called “super-resolution mapping” to produce the predicted hard land cover layers at higher resolution than the original remotely sensed image. Superresolution mapping can be implemented using a number of algorithms in which the Hopfield Neural Network (HNN) has showed some advantages. The HNN has improved the land cover classification through superresolution mapping greatly with the high resolution data. However, the super-resolution mapping is based on the spatial dependence assumption, therefore it is predicted that the accuracy of resulted land cover classes depends on the relative size of spatial features and the spatial resolution of the remotely sensed image. This research is to evaluate the capability of HNN to implement the super-resolution mapping for SPOT image to create higher resolution land cover classes with different zoom factor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.