Abstract

Land cover mapping of intensive cropping areas facilitates an enhanced regional response to biosecurity threats and to natural disasters such as drought and flooding. Such maps also provide information for natural resource planning and analysis of the temporal and spatial trends in crop distribution and gross production. In this work, 10 meter resolution land cover maps were generated over a 6200 km2 area of the Riverina region in New South Wales (NSW), Australia, with a focus on locating the most important perennial crops in the region. The maps discriminated between 12 classes, including nine perennial crop classes. A satellite image time series (SITS) of freely available Sentinel-1 synthetic aperture radar (SAR) and Sentinel-2 multispectral imagery was used. A segmentation technique grouped spectrally similar adjacent pixels together, to enable object-based image analysis (OBIA). K-means unsupervised clustering was used to filter training points and classify some map areas, which improved supervised classification of the remaining areas. The support vector machine (SVM) supervised classifier with radial basis function (RBF) kernel gave the best results among several algorithms trialled. The accuracies of maps generated using several combinations of the multispectral and radar bands were compared to assess the relative value of each combination. An object-based post classification refinement step was developed, enabling optimization of the tradeoff between producers’ accuracy and users’ accuracy. Accuracy was assessed against randomly sampled segments, and the final map achieved an overall count-based accuracy of 84.8% and area-weighted accuracy of 90.9%. Producers’ accuracies for the perennial crop classes ranged from 78 to 100%, and users’ accuracies ranged from 63 to 100%. This work develops methods to generate detailed and large-scale maps that accurately discriminate between many perennial crops and can be updated frequently.

Highlights

  • IntroductionDetailed mapping of crops offers a range of specific benefits for growers, industry and government

  • Land cover maps have applications in natural resource planning [1], prediction of environmental outcomes [2], assessment of land use change [3] and forecasting quantities of food produced [4].Detailed mapping of crops offers a range of specific benefits for growers, industry and government.An understanding of the distribution and location of crops is essential information to enable rapid response to a biosecurity incursion, i.e., for the establishment of exclusion zones and the deployment of surveillance teams

  • A land cover map encompassing an area of 6200 km2 within the Riverina region in New South Wales (NSW), Australia, was produced, with a particular focus on locating perennial crops and differentiating between them

Read more

Summary

Introduction

Detailed mapping of crops offers a range of specific benefits for growers, industry and government. An understanding of the distribution and location of crops is essential information to enable rapid response to a biosecurity incursion, i.e., for the establishment of exclusion zones and the deployment of surveillance teams. Analysis of the location and area of crops facilitates water resource planning [5]. A better understanding of the temporal and spatial distribution of specific crop types can greatly assist in monitoring production spread and improve decision-making around varietal selection [6], harvest planning and decisions on spray application based on risk to neighboring crops and wildlife [7]. Accurate measures of a crop area are essential when estimating annual gross production [8]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call