Abstract

Abstract. Global high-precision and high timeliness land cover data is a fundamental and strategic resource for global strategic interest maintenance, global environmental change research, and sustainable development planning. However, due to difficulties in obtaining control and reference information from overseas, a single data source cannot effectively cover, and surface coverage classification faces significant challenges in information extraction. Based on this, this article proposes an intelligent interpretation method for typical elements based on multimodal fusion, starting from the characteristics of domestic remote sensing images. It also develops an optical SAR data conversion and complementarity strategy based on convolutional translation networks, as well as a typical element extraction algorithm. This solves the problems of sparse remote sensing images, limited effective observations, and difficult information recognition, thereby achieving automation of typical element information under dense observation time series High precision extraction and analysis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.