Abstract

Human land cover can degrade estuaries directly through habitat loss and fragmentation or indirectly through nutrient inputs that reduce water quality. Strong precipitation events are occurring more frequently, causing greater hydrological connectivity between watersheds and estuaries. Nutrient enrichment and dissolved oxygen depletion that occur following these events are known to limit populations of benthic macroinvertebrates and commercially harvested species, but the consequences for top consumers such as birds remain largely unknown. We used non-metric multidimensional scaling (MDS) and structural equation modeling (SEM) to understand how land cover and annual variation in rainfall interact to shape waterbird community composition in Chesapeake Bay, USA. The MDS ordination indicated that urban subestuaries shifted from a mixed generalist-specialist community in 2002, a year of severe drought, to generalist-dominated community in 2003, of year of high rainfall. The SEM revealed that this change was concurrent with a sixfold increase in nitrate-N concentration in subestuaries. In the drought year of 2002, waterbird community composition depended only on the direct effect of urban development in watersheds. In the wet year of 2003, community composition depended both on this direct effect and on indirect effects associated with high nitrate-N inputs to northern parts of the Bay, particularly in urban subestuaries. Our findings suggest that increased runoff during periods of high rainfall can depress water quality enough to alter the composition of estuarine waterbird communities, and that this effect is compounded in subestuaries dominated by urban development. Estuarine restoration programs often chart progress by monitoring stressors and indicators, but rarely assess multivariate relationships among them. Estuarine management planning could be improved by tracking the structure of relationships among land cover, water quality, and waterbirds. Unraveling these complex relationships may help managers identify and mitigate ecological thresholds that occur with increasing human land cover.

Highlights

  • Conversion of natural habitats to human dominated landscapes has led to worldwide deterioration of estuarine ecosystems [1]

  • We summarized the percentage of urban development in each watershed weighted by its squared inverse distance (IDW) to the shoreline because of past evidence that ecological indicators in Chesapeake Bay are sensitive to this land cover in close proximity to subestuaries [13,18]

  • Two-dimensional solutions were chosen because stress was relatively low for both years (2002: stress = 0.176; 2003: stress = 0.183). Both generalists and specialists were widely distributed among subestuaries in the drought year of 2002 and demonstrated no clear association with land cover or water quality indices (Fig. 2A, see Table S1 for species names and waterbird community composition (WCC) scores)

Read more

Summary

Introduction

Conversion of natural habitats to human dominated landscapes has led to worldwide deterioration of estuarine ecosystems [1]. Human land cover and rainfall shape estuarine condition directly by reducing coastal habitat quality or indirectly by lowering water quality. Both agriculture and urban development directly impair estuaries through degradation or loss of coastal wetlands, modification of other natural shoreline areas, and habitat fragmentation and isolation [3,4,5]. These land cover types indirectly degrade estuaries by carrying nutrients and contaminants from terrestrial watersheds into coastal water bodies. With watersheds in many coastal areas undergoing dynamic changes in land cover and climate, management and restoration programs could benefit from understanding how rainfall interacts with expanding human development to shape estuarine condition

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call