Abstract

Global environmental change is expected to dramatically affect agricultural crop production through a myriad of pathways. One important and thus far poorly understood impact is the effect of land cover and climate change on agricultural insect pests and insecticides. Here we address the following three questions: (1) how do landscape complexity and weather influence present-day insecticide use, (2) how will changing landscape characteristics and changing climate influence future insecticide use, and how do these effects manifest for different climate and land cover projections? and (3) what are the most important drivers of changing insecticide use? We use panel models applied to county-level agriculture, land cover, and weather data in the US to understand how landscape composition and configuration, weather, and farm characteristics impact present-day insecticide use. We then leverage forecasted changes in land cover and climate under different future scenarios to predict insecticide use in 2050. We find different future scenarios—through modifications in both landscape and climate conditions—increase the amount of area treated by ~ 4–20% relative to 2017, with regionally heterogeneous impacts. Of note, we report large farms are more influential than large crop patches and increased winter minimum temperature is more influential than increased summer maximum temperature. However, our results suggest the most important determinants of future insecticide use are crop composition and farm size, variables for which future forecasts are sparse. Both landscape and climate change are expected to increase future insecticide use. Yet, crop composition and farm size are highly influential, data-poor variables. Better understanding of future crop composition and farm economics is necessary to effectively predict and mitigate increases in pesticide use.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.